资源类型

期刊论文 106

会议视频 2

年份

2023 8

2022 7

2021 5

2020 6

2019 3

2018 6

2017 4

2016 2

2015 4

2014 11

2013 4

2012 10

2011 1

2010 4

2009 3

2008 11

2007 13

2005 2

2003 3

2001 1

展开 ︾

关键词

低温SOFC 2

固体氧化物燃料电池 2

浓度场 2

电解质 2

IHNI 1

NASICON 1

PGNAA 1

SIMPLEC算法 1

cDNA克隆 1

一氧化碳 1

中子俘获疗法 1

临床试治 1

临界浓度 1

二氧化碳 1

二维插值 1

传导机理 1

促黄体激素(LH) 1

凝胶电解质 1

医院中子照射器 1

展开 ︾

检索范围:

排序: 展示方式:

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1354-1371 doi: 10.1007/s11705-022-2286-4

摘要: With the increasing development of digital devices and electric vehicles, high energy-density rechargeable batteries are strongly required. As one of the most promising anode materials with an ultrahigh specific capacity and extremely low electrode potential, lithium metal is greatly considered an ideal candidate for next-generation battery systems. Nevertheless, limited Coulombic efficiency and potential safety risks severely hinder the practical applications of lithium metal batteries due to the inevitable growth of lithium dendrites and poor interface stability. Tremendous efforts have been explored to address these challenges, mainly focusing on the design of novel electrolytes. Here, we provide an overview of the recent developments of localized high-concentration electrolytes in lithium metal batteries. Firstly, the solvation structures and physicochemical properties of localized high-concentration electrolytes are analyzed. Then, the developments of localized high-concentration electrolytes to suppress the formation of dendritic lithium, broaden the voltage window of electrolytes, enhance safety, and render low-temperature operation for robust lithium metal batteries are discussed. Lastly, the remaining challenges and further possible research directions for localized high-concentration electrolytes are outlined, which can promisingly render the practical applications of lithium metal batteries.

关键词: high-concentration electrolyte     localized high-concentration electrolyte     lithium metal battery     solid electrolyte interphase     dendrite    

Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys

Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1065-1071 doi: 10.1007/s11705-019-1909-x

摘要: Micro-arc oxidation (MAO) is an efficient approach to improve the hardness, wear resistance, and other properties of aluminum alloys. In order to investigate the effect of the electrolyte concentration on the properties of MAO coatings for LY12 alloy, the voltage variation during the MAO process was recorded. The surface morphologies and phase compositions of the coatings produced with different electrolytes were investigated using scanning electron microscopy and X-ray diffraction, respectively. The roughness and thickness of the coatings were measured using a pocket roughness meter and an eddy-current thickness meter, respectively. The tribological performances of the coatings were investigated against GCr15 bearing steel on a ball-on-disc wear tester in open air. The results showed that with an increase in the Na SiO content, the working voltage of the MAO process decreased, the roughness and thickness of the coatings increased significantly, and the relative content of the -Al O phase decreased. With an increase in the KOH content, the working voltage decreased slightly, the roughness and thickness of the coatings increased slightly, and the α- and -Al O phase contents remained unchanged. The friction coefficient and wear rate of the coatings increased with an increase in the Na SiO and KOH concentrations. A decrease in the porosity and roughness and an increase in the α-Al O content of the coatings reduced their wear mass loss.

关键词: aluminum alloy     micro-arc oxidation     coating     electrolyte concentration     tribological performance    

Boosting the direct conversion of NHHCO electrolyte to syngas on Ag/Zn zeolitic imidazolate framework

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1196-1207 doi: 10.1007/s11705-022-2289-1

摘要: The electrochemical reduction of NH4HCO3 to syngas can bypass the high energy consumption of high-purity CO2 release and compression after the ammonia-based CO2 capture process. This technology has broad prospects in industrial applications and carbon neutrality. A zeolitic imidazolate framework-8 precursor was introduced with different Ag contents via colloid chemical synthesis. This material was carbonized at 1000 °C to obtain AgZn zeolitic imidazolate framework derived nitrogen carbon catalysts, which were used for the first time for boosting the direct conversion of NH4HCO3 electrolyte to syngas. The AgZn zeolitic imidazolate framework derived nitrogen carbon catalyst with a Ag/Zn ratio of 0.5:1 achieved the highest CO Faradaic efficiency of 52.0% with a current density of 1.15 mA·cm–2 at –0.5 V, a H2/CO ratio of 1–2 (–0.5 to –0.7 V), and a stable catalytic activity of more than 6 h. Its activity is comparable to that of the CO2-saturated NH4HCO3 electrolyte. The highly discrete Ag-Nx and Zn-Nx nodes may have combined catalytic effects in the catalysts synthesized by appropriate Ag doping and sufficient carbonization. These nodes could increase active sites of catalysts, which is conducive to the transport and adsorption of reactant CO2 and the stability of *COOH intermediate, thus can improve the selectivity and catalytic activity of CO.

关键词: Ag catalyst     zeolitic imidazolate framework     CO2 electroreduction     ammonium bicarbonate electrolyte     syngas    

A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater

Shiting Ren, Mengchen Li, Jianyu Sun, Yanhong Bian, Kuichang Zuo, Xiaoyuan Zhang, Peng Liang, Xia Huang

《环境科学与工程前沿(英文)》 2017年 第11卷 第4期 doi: 10.1007/s11783-017-0983-x

摘要: To separate and concentrate NH4+ and PO43 from the synthetic wastewater to the concentrated solution through a novel electrochemical reactor with circulated anode and cathode using the difference of the concentration between electrode chamber and middle chamber. In recent years, the research on electrochemical processes have been focused on phosphate and ammonium removal and recovery. Among the wide range of possibilities with regards to electrochemical processes, capacitive deionization (CDI) saves the most energy while at the same time does not have continuity and selectivity. In this study, a new electrochemical reactor with electrolyte cyclic flowing in the electrode chambers was constructed to separate and concentrate phosphate and ammonium continuously and selectively from wastewater, based on the principle of CDI. At the concentration ratio of NaCl solution between the electrode chambers and the middle chamber (r) of 25 to 1, phosphate and ammonium in concentration level of domestic wastewater can be removed and recovered continuously and selectively as struvite. Long-term operation also indicated the ability to continuously repeat the reaction and verified sustained stability. Further, the selective recovery at the certain r could also be available to similar technologies for recovering other kinds of substances.

关键词: Nutrients recovery     Electrochemical reactor     Electrolyte cyclic flowing     Concentration ratio     Struvite    

A review on the development of electrolytes for lithium-based batteries for low temperature applications

《能源前沿(英文)》 2023年 第17卷 第1期   页码 43-71 doi: 10.1007/s11708-022-0853-5

摘要: The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers. This equipment is exposed to extremely low temperatures in space or on the Martian surface. The extremely low temperatures affect the discharge characteristics of the battery and decrease its available working capacity. Various solvents, cosolvents, additives, and salts have been researched to fine tune the conductivity, solvation, and solid-electrolyte interface forming properties of the electrolytes. Several different resistive phenomena have been investigated to precisely determine the most limiting steps during charge and discharge at low temperatures. Longer mission lifespans as well as self-reliance on the chemistry are now highly desirable to allow low temperature performance rather than rely on external heating components. As Martian rovers are equipped with greater instrumentation and demands for greater energy storage rise, new materials also need to be adopted involving next generation lithium-ion chemistry to increase available capacity. With these objectives in mind, tailoring of the electrolyte with higher-capacity materials such as lithium metal and silicon anodes at low temperatures is of high priority. This review paper highlights the progression of electrolyte research for low temperature performance of lithium-ion batteries over the previous several decades.

关键词: electrolyte     lithium-ion     low temperature     aerospace     solid-electrolyte interface    

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

Tong Zhang, Elie Paillard

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 577-591 doi: 10.1007/s11705-018-1758-z

摘要:

Lithium-ion batteries are a key technology in today’s world and improving their performances requires, in many cases, the use of cathodes operating above the anodic stability of state-of-the-art electrolytes based on ethylene carbonate (EC) mixtures. EC, however, is a crucial component of electrolytes, due to its excellent ability to allow graphite anode operation–also required for high energy density batteries–by stabilizing the electrode/electrolyte interface. In the last years, many alternative electrolytes, aiming at allowing high voltage battery operation, have been proposed. However, often, graphite electrode operation is not well demonstrated in these electrolytes. Thus, we review here the high voltage, EC-free alternative electrolytes, focusing on those allowing the steady operation of graphite anodes. This review covers electrolyte compositions, with the widespread use of additives, the change in main lithium salt, the effect of anion (or Li salt) concentration, but also reports on graphite protection strategies, by coatings or artificial solid electrolyte interphase (SEI) or by use of water-soluble binder for electrode processing as these can also enable the use of graphite in electrolytes with suboptimal intrinsic SEI formation ability.

关键词: lithium-ion     electrolyte     solid electrolyte interphase     additives     high voltage     graphite    

PM concentration declining saves health expenditure in China

《环境科学与工程前沿(英文)》 2023年 第17卷 第7期 doi: 10.1007/s11783-023-1690-4

摘要:

● Monthly hospitalization expenses are sensitive to increases in PM2.5 exposure.

关键词: Air pollution     Health expenditure     PM2.5 concentration     Economic impact     Heterogeneous effect    

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 334-364 doi: 10.1007/s11708-017-0490-6

摘要: Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.

关键词: polymer electrolyte fuel cell     ultra-thin catalyst layer     electrostatic interactions     characterization and modeling     structure-property-performance relation     water management    

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1221-1230 doi: 10.1007/s11705-023-2298-8

摘要: The vanadium redox flow battery with a safe and capacity-controllable large-scale energy storage system offers a new method for the sustainability. In this case, acetic acid, methane sulfonic acid, sulfonic acid, amino methane sulfonic acid, and taurine are used to overcome the low electrolyte energy density and stability limitations, as well as to investigate the effects of various organic functional groups on the vanadium redox flow battery. When compared to the pristine electrolyte (0.22 Ah, 5.0 Wh·L–1, 85.0%), the results show that taurine has the advantage of maintaining vanadium ion concentrations, discharge capacity (1.43 Ah), energy density (33.9 Wh·L–1), and energy efficiency (90.5%) even after several cycles. The acetic acid electrolyte is more conducive to the low-temperature stability of the V(II) electrolyte (177 h at −25 °C) than pristine (82 h at −2 °C). The –SO3H group, specifically the coaction of the –NH2 and –SO3H groups, improves electrolyte stability. The –NH2 and –COOH additive groups improved conductivity and electrochemical activity.

关键词: vanadium redox flow battery     functional groups     organic additives     energy density     stability    

低温固体氧化物燃料电池的复合电解质材料

谢富丞,王诚,毛宗强

《中国工程科学》 2013年 第15卷 第2期   页码 72-76

摘要:

固体氧化物燃料电池(SOFC)是一种高效、环保的发电装置。低温化是SOFC的主要发展方向。探索适合在低温(400~600 ℃)条件下操作的高性能电解质材料是SOFC低温化发展的关键。近年来,研究人员发展了新型的复合电解质材料,取得了较好的成果。本文综述了近年来低温SOFC复合电解质材料的研究进展,简要介绍了复合电解质材料的特点、类型和传导机理。

关键词: 低温SOFC     复合电解质     传导机理    

Parametric equations for notch stress concentration factors of rib–deck welds under bending loading

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 595-608 doi: 10.1007/s11709-021-0720-1

摘要: The effective notch stress approach for evaluating the fatigue strength of rib–deck welds requires notch stress concentration factors obtained from complex finite element analysis. To improve the efficiency of the approach, the notch stress concentration factors for three typical fatigue-cracking modes (i.e., root–toe, root–deck, and toe–deck cracking modes) were thoroughly investigated in this study. First, we developed a model for investigating the effective notch stress in rib–deck welds. Then, we performed a parametric analysis to investigate the effects of multiple geometric parameters of a rib–deck weld on the notch stress concentration factors. On this basis, the multiple linear stepwise regression analysis was performed to obtain the optimal regression functions for predicting the notch stress concentration factors. Finally, we employed the proposed formulas in a case study. The notch stress concentration factors estimated from the developed formulas show agree well with the finite element analysis results. The results of the case study demonstrate the feasibility and reliability of the proposed formulas. It also shows that the fatigue design curve of FAT225 seems to be conservative for evaluating the fatigue strength of rib–deck welds.

关键词: notch stress concentration factor     rib–deck weld     parametric analysis     regression analysis     parametric equation    

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese

Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 365-373 doi: 10.1007/s11708-017-0500-8

摘要: Lithium manganese oxide (LiMn O ) is a principal cathode material for high power and high energy density electrochemical storage on account of its low cost, non-toxicity, and ease of preparation relative to other cathode materials. However, there are well-documented problems with capacity fade of lithium ion batteries containing LiMn O . Experimental observations indicate that the manganese content of the electrolyte increases as an electrochemical cell containing LiMn O ages, suggesting that active material loss by dissolution of divalent manganese from the LiMn O surface is the primary reason for reduced cell life in LiMn O batteries. To improve the retention of manganese in the active material, it is key to understand the reactions that occur at the cathode surface. Although a thin layer of electrolyte decomposition products is known to form at the cathode surface, the speciation and reaction mechanisms of Mn in this interface layer are not yet well understood. To bridge this knowledge gap, reactive force field (ReaxFF) based molecular dynamics was applied to investigate the reactions occurring at the LiMn O cathode surface and the mechanisms that lead to manganese dissolution. The ReaxFFMD simulations reveal that the cathode-electrolyte interface layer is composed of oxidation products of electrolyte solvent molecules including aldehydes, esters, alcohols, polycarbonates, and organic radicals. The oxidation reaction pathways for the electrolyte solvent molecules involve the formation of surface hydroxyl species that react with exposed manganese atoms on the cathode surface. The presence of hydrogen fluoride (HF) induces formation of inorganic metal fluorides and surface hydroxyl species. Reaction products predicted by ReaxFF-based MD are in agreement with experimentally identified cathode-electrolyte interface compounds. An overall cathode-electrolyte interface reaction scheme is proposed based on the molecular simulation results.

关键词: lithium manganese oxide batteries     reactive force field (ReaxFF)     cathode-electrolyte interface layer     molecular dynamics    

固体氧化物燃料电池的电解质及电极材料的电导率研究方法

贺贝贝,潘 鑫,夏长荣

《中国工程科学》 2013年 第15卷 第2期   页码 57-65

摘要:

论述了晶体材料,重点是固体氧化物燃料电池组件的导电机理,介绍了影响电导率的几个因素。针对不同的电解质和电极材料,讨论了几种常用的测量电解质和电极总电导率、电子电导率以及离子电导率的方法,并指出在测量中需要注意的问题。

关键词: 导电机理     电解质     电极     电导率     固体氧化物燃料电池    

Diagnostic evaluation of plasma aldosterone concentration to plasma renin activity ratio in primary aldosteronism

ZHANG Huilan, WANG Daowen

《医学前沿(英文)》 2008年 第2卷 第1期   页码 11-14 doi: 10.1007/s11684-008-0003-4

摘要: Using the plasma aldosterone concentration to plasma renin activity ratio (PAC/PRA ratio) as the screening test of choice for primary aldosteronism in hypertensive patients, we studied the clinical characteristics and the diagnostic value of PAC/PRA ratio in primary aldosteronism. The plasma aldosterone concentration (PAC) and plasma renin activity (PRA) levels were measured by radioimmunoassay in 902 hypertensive patients from out-patient clinics or hospitals. One hundred and twenty-six suspected primary aldosteronism patients whose PAC/PRA ratio was > 25 ng/dL/ng/mL/hr had a lamellar computed tomography (CT) scan in the adrenal gland and follow-up visits. The proportion of primary aldosteronism in hypertensive patients was 14% (126/902). There were 54 patients with unilateral or bilateral hyperplasia and 25 patients with adenoma according to the CT scan. 39% (49/126) of the patients with primary aldosteronism had hypokalemia. Twenty-five patients received surgical treatment. The efficacy and cure rates were 100% (25/25) and 48% (12/25), respectively. The effective rate of aldactone and the single-drug cure rate were 89% (48/54) and 24% (13/54), respectively. Primary aldosteronism affects over 10% of hypertensive patients in China. The PAC/PRA ratio can be considered as a routine screening test in hypertensives, especially resistant hypertensive patients and a high PAC/PRA ratio is an invaluable index in primary aldosteronism diagnosis.

synthesis of double-shell truncated octahedral Pt-Ni alloys for oxygen reduction reaction of polymer electrolyte

Xiashuang LUO, Yangge GUO, Hongru ZHOU, Huan REN, Shuiyun SHEN, Guanghua WEI, Junliang ZHANG

《能源前沿(英文)》 2020年 第14卷 第4期   页码 767-777 doi: 10.1007/s11708-020-0667-2

摘要: Shape-controlled Pt-Ni alloys usually offer an exceptional electrocatalytic activity toward the oxygen reduction reaction (ORR) of polymer electrolyte membrane fuel cells (PEMFCs), whose tricks lie in well-designed structures and surface morphologies. In this paper, a novel synthesis of truncated octahedral PtNi alloy catalysts that consist of homogeneous Pt-Ni alloy cores enclosed by NiO-Pt double shells through thermally annealing defective heterogeneous PtNi alloys is reported. By tracking the evolution of both compositions and morphologies, the outward segregation of both PtO and NiO are first observed in Pt-Ni alloys. It is speculated that the diffusion of low-coordination atoms results in the formation of an energetically favorable truncated octahedron while the outward segregation of oxides leads to the formation of NiO-Pt double shells. It is very attractive that after gently removing the NiO outer shell, the dealloyed truncated octahedral core-shell structure demonstrates a greatly enhanced ORR activity. The as-obtained truncated octahedral Pt Ni core-shell alloy presents a 3.4-folds mass-specific activity of that for unannealed sample, and its activity preserves 45.4% after 30000 potential cycles of accelerated degradation test (ADT). The peak power density of the dealloyed truncated octahedral Pt Ni core-shell alloy catalyst based membrane electrolyte assembly (MEA) reaches 679.8 mW/cm , increased by 138.4 mW/cm relative to that based on commercial Pt/C.

关键词: dealloyed Pt-Ni alloys     truncated octahedron     double-shell     thermal annealing     oxygen reduction reaction (ORR)    

标题 作者 时间 类型 操作

Localized high-concentration electrolytes for lithium metal batteries: progress and prospect

期刊论文

Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys

Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang

期刊论文

Boosting the direct conversion of NHHCO electrolyte to syngas on Ag/Zn zeolitic imidazolate framework

期刊论文

A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater

Shiting Ren, Mengchen Li, Jianyu Sun, Yanhong Bian, Kuichang Zuo, Xiaoyuan Zhang, Peng Liang, Xia Huang

期刊论文

A review on the development of electrolytes for lithium-based batteries for low temperature applications

期刊论文

Recent advances toward high voltage, EC-free electrolytes for graphite-based Li-ion battery

Tong Zhang, Elie Paillard

期刊论文

PM concentration declining saves health expenditure in China

期刊论文

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

期刊论文

Characterization and comparison of organic functional groups effects on electrolyte performance for vanadium

期刊论文

低温固体氧化物燃料电池的复合电解质材料

谢富丞,王诚,毛宗强

期刊论文

Parametric equations for notch stress concentration factors of rib–deck welds under bending loading

期刊论文

Chemical composition and formation mechanisms in the cathode-electrolyte interface layer of lithium manganese

Sahithya REDDIVARI, Christian LASTOSKIE, Ruofei WU, Junliang ZHANG

期刊论文

固体氧化物燃料电池的电解质及电极材料的电导率研究方法

贺贝贝,潘 鑫,夏长荣

期刊论文

Diagnostic evaluation of plasma aldosterone concentration to plasma renin activity ratio in primary aldosteronism

ZHANG Huilan, WANG Daowen

期刊论文

synthesis of double-shell truncated octahedral Pt-Ni alloys for oxygen reduction reaction of polymer electrolyte

Xiashuang LUO, Yangge GUO, Hongru ZHOU, Huan REN, Shuiyun SHEN, Guanghua WEI, Junliang ZHANG

期刊论文